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Deep RL History: Deepmind and DQN
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Some Deep RL History
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Some Deep RL History
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Outline
1.Brief overview of reinforcement learning

2.RL algorithms and overestimation

3.Deep RL

4.Experiments
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Reinforcement Learning
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Modeled after diagram from  Sutton & Barto (2018)
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Reinforcement Learning
• Learn policy  that yields maximum expected discounted return: 

, where discount factor .

• Optimal policy is denoted , a policy that maximizes expected discounted 
return

π(a |s)

𝔼 [
∞

∑
t=0

γtRt+1 |S0 = s] γ ∈ [0,1)

π*
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Value-based Reinforcement Learning
• Learn optimal policy indirectly through an optimal value function.

• The state-action value function for a policy  is:

 

• Value-based methods for control aim to learn , often denoted 

• Then in any state  can take action  in every state

π

qπ(s, a) = 𝔼 [
∞

∑
t=0

γtRt+1 |S0 = s, A0 = a]
= 𝔼 [R1 |S0 = s, A0 = a] + γ𝔼 [qπ(S1, A1) |S0 = s, A0 = a]

qπ* q*

s argmaxaq*(s, a)
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Q-learning
• Q-learning [1] maintains a  estimate for all state-action pairs, and learns  

• Let   denote the “greedy” policy w.r.t. :

• Suppose the agent knows ground truth values of its greedy policy: 

• Given a transition 

• Agent can do at least as well as  by choosing action
 in the next state.

Q(s, a) q*

greedy(Q) Q

greedy(Q)(s) = argmaxa Q(s, a)

qgreedy(Q)(s, a)

(s, a, r, s′ )

greedy(Q)
argmaxa′ 

 qgreedy(Q)(s′ , a′ )
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[1] Watkins, C. J., & Dayan, P. (1992). Q-learning. Machine learning.
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Q-learning Update
• Given a transition :

• Would like to move estimate  to be closer to  

•  is a function we don’t have access to, so we use 
:

(s, a, r, s′ )

Q(s, a) r + γmaxa′ 
qgreedy(Q)(s′ , a′ )

qgreedy(Q)
r + γmaxa′ 

 Q(s′ , a′ )

Q(s, a) ← (1 − α) Q(s, a)

prediction

+ α[r + γmaxa′ 
 Q(s′ , a′ )

target

]
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Overestimation in Q-learning

 vs. 

 vs. 

Q(s, a) → r + γ max
a′ 

qgreedy(Q)(s′ , a′ )

≈ r + γ max
a′ 

Q(s′ , a′ )

r + γ max
a′ 

Q(s′ , a′ ) r + γ max
a′ 

qgreedy(Q)(s′ , a′ )

max
a′ 

Q(s′ , a′ ) max
a′ 

qgreedy(Q)(s′ , a′ )

Q(s, a) > qgreedy(Q)(s, a)
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Overestimation

[2] Hasselt, H. (2010). Double Q-
learning. NeurIPS.
[3] Thrun & Schwartz (1993). 
Issues in Using Function 
Approximation for Reinforcement 
Learning. Fourth Connectionist 
Models Summer School

Q-learning 
suffers from 

overestimation 
[2,3].
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Maximization Bias: An Example
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N=10? Max is 5.1 N=100? Max is ~4

...1000 
dice

Empir ical 
mean across 

N rolls
3 3.2 3.5

...
2.9 3.8 4.0
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Maximization Bias: What’s going on?
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• Suppose we want to estimate the mean value of the best die. 

• ….. all the dice are fair, and hence have the same mean. 

3.5
• What is really going on: If we use the maximum of noisy estimates as an 

estimate of the max, it is (generally) positively biased.

N=10? Max is 5.1 N=100? Max is ~4
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Maximization Bias in Q-learning
• Recall: Try to move  to be closer to 

•  is an estimate. Estimates  noise

Q(s, a) r + γmaxa′ 
 Q(s′ , a′ )

Q(s′ , a′ ) ⟹

14

Max
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Maximization Bias in Q-learning
• Q-learning

•

•

•

• One Q-estimator both selects action to estimate and estimates it

Q(s, a) ← (1 − α)Q(s, a) + α[r + γmaxa′ 
Q(s′ , a′ )]

a′ = argmaxa′ 
Q(s′ , a′ )

Q(s, a) ← (1 − α)Q(s, a) + α[r + γQ(s′ , a′ )]

15

Use Q-estimates to 
select “best” 

actions
Use Q-estimates to 
estimate the value 

of the best 
selected action
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Q-Learning Internal Dialogue
“Which of these dice do you think is best?”

Q-learner: “Dice #300, because it got the highest empirical mean”.

“Oh ok, What do you think is the expected value of the best die?”

Q-learner: “Well die #300 is my best die, and it rolled 4.0 on 
average, so I will say that the best die in my set gives me 4.0 on 
average.”

16



Prabhat Nagarajan Revisiting Overestimation in Value-based Deep RL

A more sensible strategy
1. Select best die with dice experiment
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2. Run an independent experiment on that best die and estimate the value of that die.

...

3 3.2 3.5

...
2.9 3.8 4.0

3.5
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Double Q-learning
• Double Q-learning [2] mitigates overestimation by learning 2 Q-functions

• Q-learning

•

•

• Double Q-learning: Update a single Q-estimator at a time

•

•

a′ = argmaxa′ 
Q(s′ , a′ )

Q(s, a) ← (1 − α)Q(s, a) + α[r + γQ(s′ , a′ )]

a′ = argmaxa′ 
Q1(s′ , a′ )

Q1(s, a) ← (1 − α)Q1(s, a) + α[r + γQ2(s′ , a′ )]

18

[2] Hasselt, H. (2010). Double Q-learning. NeurIPS.
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Why should we care about overestimation?
• Clear constructions where overestimation can significantly hinder learning

• Implicit consensus that less overestimation implies better performance 

• Quotes from Double DQN [4] abstract: 

• “It was not previously known whether, in practice, such overestimations are 
common, whether they harm performance, and whether they can generally be 
prevented. In this paper, we answer all these questions affirmatively”

• “We propose a specific adaptation to the DQN algorithm and show that the resulting 
algorithm not only reduces the observed overestimations, as hypothesized, but that 
this also leads to much better performance on several games.

19

[4] van Hasselt et al. (2016). Deep Reinforcement Learning with Double Q-learning. AAAI.
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Deep RL
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Deep Q-Networks (DQN)
• Q-learning and Double Q-learning are “tabular” algorithms

• For large state spaces, we require function approximation

• Represent Q-function with function approximators (e.g., neural networks) 
rather than as tables.

• Deep Q-networks [5] takes Q-learning and enables us to approximate the 
Q-function with deep neural networks

• First algorithm to be able to learn directly from pixels on a diverse set of 
games.

21

[5] Mnih et al. (2015). Human-level control through deep reinforcement learning. Nature.



Prabhat Nagarajan Revisiting Overestimation in Value-based Deep RL

Regression in Deep Neural Networks
• Stationary (or fixed) dataset of examples  of examples and targets (or 

labels)

• Neural network  makes predictions 

• Train to minimize some loss 

• Loss is typically a function of prediction error 

(x, y)

θ ̂y = f(x; θ)

ℒ( ̂y, y)

y − ̂y

22
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Regression

23

• Take prediction  and target  and train under some loss ̂y y ℒ( ̂y, y)
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Deep Q-Networks (DQN)
• Trains Q-network  through regression

•                                         (   in Q-learning) 

•                     ( )

• Target network , copied from the Q-network  
periodically. 

θ

̂y = Q(s, a; θ) Q(s, a)

y = r + γmaxa′ 
Q(s′ , a′ ; θ−) r + γmaxa′ 

 Q(s′ , a′ )

θ− θ

24
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Extending Double Q-learning to Deep RL
• DQN still suffers from overestimation

• Maintain two Q-networks  and  and update one of the two networks at each timestep

• Suppose we update 

• Prediction: 

• Target:

•

•

• Call this True Deep Double Q-learning

θ1 θ2

θ1

̂y = Q(s, a; θ1)

a′ = argmaxa′ 
 Q(s′ , a′ ; θ−

1 )

y = r + γQ(s′ , a′ ; θ−
2 )

25

 selects the action to estimateθ1

 estimates the action-valueθ2
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Double DQN
• Double DQN [4] addresses overestimation with a modified target

•

• Target

•

•

• DQN:             

• Double DQN uses the target network as a proxy second Q-function

̂y = Q(s, a; θ)

a′ = argmaxa′ 
 Q(st+1, a′ ; θ);

y = rt+1 + γQ(st+1, a′ ; θ−)

a′ = argmaxa′ 
 Q(st+1, a′ ; θ−);

26

Only one network  is trainedθ

 may be correlated to  as 
it is a recent copy

θ− θ

[4] van Hasselt et al. (2016). Deep Reinforcement Learning with Double Q-learning. AAAI.
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Experiments
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Reminder: DQN & Double DQN
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Methodology
• Evaluate in Arcade Learning Environment [6,7], same as original papers

• 6 Environments taken from papers on overestimation in deep RL

• Agents periodically evaluated every 250K timesteps for 125K timesteps

• Measure scores and overestimations

• 5 seeds with individual curves

29

[6] Bellemare et al. (2013). The Arcade Learning Environment: An Evaluation Platform for General Agents. JAIR.
[7] Machado C. et al. (2018). Revisiting the Arcade Learning Environment: Evaluation Protocols and Open Problems for 
General Agents. JAIR.
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Measuring Overestimation
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Q(s, a) > qgreedy(Q)(s, a)
Cannot compute in Atari

qgreedy(Q)(s, a) ≈ QMC
greedy(Q)

(s, a)
Monte Carlo rollouts can 

give us unbiased 
estimates of 

qgreedy(Q)(s, a)

...
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Some Deep RL History
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RMSProp+Huber Adam
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DQN with Adam+MSE
• Obando-Ceron & Castro (2021) [8] showed that a DQN implementation 

using Adam+MSE outperforms DQN with RMSProp+Huber Loss

• Tested all of 

• Other work [9] showed that DQN with Adam+MSE performs similar to 
Distributional DQN

{RMSProp, Adam} × {Huber Loss, MSE}

32

[8] Ceron, J. S. O., & Castro, P. S.(2021). Revisiting rainbow: Promoting more insightful and inclusive deep reinforcement 
learning research. ICML.
[9] Agarwal, R., Schwarzer, M., Castro, P. S., Courville, A. C., & Bellemare, M (2021). Deep reinforcement learning at the edge 
of the statistical precipice. NeurIPS.
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DQN with Adam+MSE

• These advances may still be beneficial, but have not been revisited.

33

DQN
Double 

DQN
+Pr ior it ized

+Dueling
Distr ibut ional 

DQN Rainbow

RMSProp+Huber Adam

DQN 
(Adam+MSE)
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How does DQN (RMSProp+Huber) compare 
to DQN (Adam+MSE) in terms of 

overestimation?
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Optimizer-loss Combination and Overestimation
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Optimizer-loss Combination and Overestimation
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Optimizer-loss Combination and Overestimation
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Optimizer-loss Combination and Overestimation
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DQN (Adam+MSE) exhibits reduced 
overestimation. Does Double DQN 

(Adam+MSE) still reduce overestimation over 
DQN?

39
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Revisiting Double DQN Overestimation
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Revisiting Double DQN Overestimation
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Does Double DQN still reduces overestimation 
over DQN. Does it still boost performance?

Figures taken from van Hasselt et al. 2016
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Re-investigating Performance

43



Prabhat Nagarajan Revisiting Overestimation in Value-based Deep RL

Re-investigating Performance
• “It was not previously known whether, in practice, such overestimations are common, whether 

they harm performance, and whether they can generally be prevented. In this paper, we answer 
all these questions affirmatively”

• At the very least, there are some instances where more overestimation does not harm 
performance

• “We propose a specific adaptation to the DQN algorithm and show that the resulting algorithm not 
only reduces the observed overestimations, as hypothesized, but that this also leads to much 
better performance on several games.

• We still observe reduced overestimation

• We do not observe a significant difference in performance

• Causal implication…. Does overestimation really harm performance? Or does divergence harm 
performance?

44
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Double DQN Overestimation
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Can True Deep Double Q-learning 
reduce overestimation over Double 

DQN?
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True Deep Double Q-learning
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Double Head TDDQL

Double Net TDDQL
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True DDQL: Overestimation
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True DDQL: Overestimation
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How does TDDQL compare to 
Double DQN in terms of 

performance?
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TDDQL Performance
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Summarizing results
• The DQN (Adam+MSE) shows less overestimation than DQN 

(RMSProp+Huber)

• Double DQN (Adam+MSE) still reduces overestimation

• Maintaining two Q-functions reduces overestimation over Double 
DQN

• On these tasks, it seems overestimation matters up to a point

52
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Observations
• Open question: When does overestimation matter or not 

matter for performance?

• Advances in deep learning can give big gains in deep RL

• Revisiting algorithms can be insightful!

• Do not assume that what was not written in papers must 
have been tried and thus must be bad.
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